4-значное число abcd очень счастливое, если:
1) Все 4 цифры в нем разные.
2) a+b = c+d
Составим все суммы пар различных цифр
1=1+0
2=2+0
3=3+0=2+1
4=4+0=1+3
5=5+0=4+1=3+2
6=6+0=5+1=4+2
7=7+0=6+1=5+2=4+3
8=8+0=7+1=6+2=5+3
9=9+0=8+1=7+2=6+3=5+4
10=9+1=8+2=7+3=6+4
11=9+2=8+3=7+4=6+5
12=9+3=8+4=7+5
13=9+4=8+5=7+6
14=9+5=8+6
15=9+6=8+7
16=9+7
17=9+8
а) Существуют, например, от 5032 до 5041.
Два крайних числа, 5032 и 5041 - очень счастливые.
б) Пусть число 1000a+100b+10с+d - большее очень счастливое.
Тогда число 1000a+100b+10с+d - 2015 =
= 1000(a-2)+100b+10(c-1)+(d-5) тоже должно быть очень счастливым.
Система
{ a+b = c+d
{ a-2 + b = c - 1 + d - 5
Подставив 1 уравнение во 2, получаем
-2 = -1 - 5
Это неверно, значит, такой пары чисел нет.
в) Чтобы ответить на этот вопрос, нужно выписать все очень счастливые числа, от 3012 до 9687, и разложить их все на множители.
Это долго и трудно.