Решите неравенство 12/(x-1)^2-2>=0
12/(x-1)²-2≥0 ОДЗ: х-1≠0 х≠1 (12-2*(x-1)²)/(x-1)²≥0 (12-2x²+4x-2)/(x-1)²≥0 -2*(x²-2x-5)/(x-1)²≥0 I÷(-2) (x²-2x-5)/(x-1)²≤0 (x-1-2√6)(x-1+2√6)/(x-1)²≤0 -∞______+______1-2√6______-______1+2√6_______+______+∞ Ответ: x∈[1-2√6;1+2√6].