2} \frac{x^2-4}{2x-x^2}=\\\\lim_{x->2} \frac{x^2-2^2}{2*x-x*x}=\\\\lim_{x->2} \frac{(x-2)(x+2)}{x(2-x)}=\\\\lim_{x->2} \frac{(x-2)(x+2)}{-x(x-2)}=\\\\lim_{x->2} \frac{-(x+2)}{x}=\\\\\frac{-(2+2)}{2}=-2" alt="lim_{x->2} \frac{x^2-4}{2x-x^2}=\\\\lim_{x->2} \frac{x^2-2^2}{2*x-x*x}=\\\\lim_{x->2} \frac{(x-2)(x+2)}{x(2-x)}=\\\\lim_{x->2} \frac{(x-2)(x+2)}{-x(x-2)}=\\\\lim_{x->2} \frac{-(x+2)}{x}=\\\\\frac{-(2+2)}{2}=-2" align="absmiddle" class="latex-formula">