Решите пожалуйста....

0 голосов
27 просмотров

Решите пожалуйста....


image

Алгебра | 27 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1)
log_{3} ^2x-2 log_{3} x=3

ОДЗ: x\ \textgreater \ 0

log_{3} ^2x-2 log_{3} x-3=0

Замена:  log_{3} x=t

t^2-2t-3=0

D=(-2)^2-4*1*(-3)=4+12=16

t_1= \frac{2+4}{2} =3

t_2= \frac{2-4}{2} =-1

log_{3} x=3  или  log_{3} x=-1

x=27   или  x= \frac{1}{3}

Ответ:  27; \frac{1}{3}

2)
lg_{} (x+1.5)=- lg_{} x

ОДЗ: \left \{ {x+1.5\ \textgreater \ 0} \atop {x\ \textgreater \ 0}} \right.

          \left \{ {x\ \textgreater \ -1.5} \atop {x\ \textgreater \ 0}} \right.

          x(0;+∞)

lg_{} (x+1.5)= lg_{} x^{-1}

x+1.5= x^{-1}

x+ \frac{3}{2} - \frac{1}{x} =0  

\frac{2x^2+3x-2}{2x} =0

2x^2+3x-2 =0

D=3^2-4*2*(-2)=9+16=25

x_1= \frac{-3+5}{4}= \frac{1}{2}

x_2= \frac{-3-5}{4} =-2  - не подходит

Ответ: \frac{1}{2}



(83.6k баллов)
0

Спасибо Вам огромное!

0

Извинте,это наверное нагло,но Аы не могли бы помочь решить одну  систему?

0

Вы*

0

http://znanija.com/task/16709298 ,если сможете.