МО параллельно АВ, ОК параллельно ВС, а значит, угол ВАС= угол ОМК, а угол ВСА = угол ОКМ. Пусть угол ВАС=2х, а угол ВСА = 2у, тогда угол ОАС=х, угол ОСА=у (так как АО и СО - биссектрисы).
Угл ОМК внешний для треугольника АОМ, и значит, он равен сумме двух углов треугольника, не смежных с ним, а значит, угол АОМ равен 2х-х=х, следовательно, треугольник АОМ равнобедренный и АМ=ОМ. Аналогично угол СОК=у, ОК=КС.
АС=АМ+МК+КС
Ну раз мы доказали, что ОМ=АМ, ОК=КС, то .