В треугольнике ABC известно, что BD медиана, AB>2 угл. BD. Доказать: угол BAC+ угол BCD...

0 голосов
147 просмотров

В треугольнике ABC известно, что BD медиана, AB>2 угл. BD.
Доказать: угол BAC+ угол BCD меньше угла DBC


Геометрия (70 баллов) | 147 просмотров
Дан 1 ответ
0 голосов

Возьмём случай, когда АВ=2ВD, тогда треугольник АВD - прямоугольный (угол А - 30 градусов), и треугольник АВС - равнобедренный, угол А = угол С = 30 градусов, вместе они 60, а угол В=120. Тогда угол СВD равен половине угла В равен 60 градусам и угол ВАС+угол ВСD=угол DВС.
Если АВ будет больше, чем 2 ВD, то угол АDВ будет становиться больше, чем 90 градусов, а значит, сумма углов ВАС и BCD будет меньше угла DBC.

(4.6k баллов)