Найдите периметр прямоугольного треугольника если его гипотенуза равна 17 а разность катетов равна 7
систему решить надоx-a=7x^2+a^2=17
x - один из катетов. х-7 - другой катет. ⇒ x²+(x-7)=17² x²+x²-14x+49-289=0 2x²-14x-240=0 I÷2 x²-7x-120=0 D=529 x₁=15 x₂=-8 x₂∉ Один из катетов равен 15, второй катет равен 8 ⇒ Периметр треугольника равен 15+8+17=40.