ABCD-правильная трапеция, ВС-меньшее основание, тогда АВ=ВС=СD. Из точки В проведем высоту ВН. Диагональ АС делит высоту на отрезки ВО=15см, ОН=12см.
Обозначим АВ=х и выразим АН=√(x^2-729). Треуг. АВС-равнобедренный, так как АВ=ВС, значит угол ВАС=ВСА. Теперь рассмотрим треуг. АНО и СВН. Они прямоугольные. Угол ВСО=НАО как накрест лежащие при параллельных AD и ВС и секущей АС, следовательно треуг. АНО и СВН подобные. Стороны треуг. АНО относятся к соответствующим сторонам треуг. СВН как 15/12 или 5/4.
ВС/АН=х/√(x^2-729)=5/4
5*√(x^2-729)=4x (чтобы избавиться от корня, возведем обе части в квадрат)
25*9(x^2-729)=16x^2
25x^2-16x^2-18255=0
9x^2=18255
x^2=2055
x=45
AB=BC=CD=45см
Найдем большее основание AD.
АН=√(x^2-729)=√(2025-729)=36см
AD=45+36*2=117см