Является ли число2011^2013+2012^2014 простым

0 голосов
31 просмотров

Является ли число2011^2013+2012^2014 простым


Математика (45 баллов) | 31 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Нет, не является.

Число 2011 оканчивается на 1, поэтому при возведении 2011 в любую степень результат будет оканчиваться на 1, в том числе и 2011^2013.

Число 2012 оканчивается на 2, квадрат этого числа будет оканчиваться на 4, куб - на 8, четвёртая степень - на 6, пятая степень - снова на 2, шестая - на 4, седьмая - на 8, восьмая - на 6 и т. д., т.е. через 4 числа цифра повторяется. Так как 2014=503*4+2, то число 2012^2014 оканчивается такой же цифрой, что и 2012^2, то есть 4.

Первый результат оканчивается на 1, второй - на 4.

1+4=5

Значит, полученная сумма будет делиться на 5, следовательно, не будет являться простым числом.

 

(84.6k баллов)
0 голосов

нет, не является. Докажем, что получившееся число чётное.

Перепишем исходное выражение в виде

2011^2013 + ((2011+1)^2013)*2012 и разложим скобку по биному Ньютона.

(2011+1)^2013 = \sum_{k=0}^{2013} Ckn*2011^(n*k)*1^k

вынесем из этой суммы первый и последний члены; оставшиеся члены в сумме составляют 2012 слагаемых, в каждое из которых входит 2011 в какой-то степени.Обозначу устаток за А.

Итак, исходное выражение в итоге равно:

2011^2013+2012*(2011^2013+A+1)=

2011^2013(1+2012) + 2012*A+ 2012

2011^2013 * (1+2012) чётное

А представляет собой сумму вида С1*2011^2010+ C2*2011^2009+ ... + C2012*2011

т.е. чётных и нечётных слагаемых поровну, следовательно, А чётное.

2012*А чётное

2012 чётное, их сумма тоже чётное число.

ЧТД 

(1.1k баллов)