Центр описанной окружности - середина гипотенузы. ⇒ OK=2,5
AB=13
ΔACB подобен ΔВОК (∠ B - общий, ∠BCA=∠OKB=90°)
AB/OB=AC/OK=2/1
Откуда AC=2 OK=5
По теореме Пифагора BC=√(169-25)=12
S=BC· AC=12·2/2=12
2) ∠BAC=BCA=∠FAE=(180-120)/2=30°
⇒∠EAC=ACE=∠CEA=60°
OH=1/3AH, ГДЕ AH-высота,
AC²=AB²+BC²-2AB·BC cos 120°=16+16+16=48
AH=√(AC²-Ch²)=√(AC²-AC²/4)=√36=6
OH=6/3=2