Дана незамкнутая ломаная abcd, причем ab=cd и угол abc = углу bcd. Доказать, что ad...

0 голосов
165 просмотров

Дана незамкнутая ломаная abcd, причем ab=cd и угол abc = углу bcd. Доказать, что ad параллельна bc.


Геометрия (413 баллов) | 165 просмотров
Дан 1 ответ
0 голосов

Пусть AC и BD пересекаются в точке O. Треугольники ABC и DCB равны по двум сторонам и углу между ними, поэтому ∠BAC = ∠BDC, а так как ∠AOB = ∠DOC, то ∠ABO = ∠DCO. Значит, равны треугольники AOB и DOC (по стороне и двум прилежащим к ней углам), поэтому AO = DO и BO = CO. Углы при общей вершине O равнобедренных треугольников AOD и BOC равны, поэтому равны и углы при их основаниях: ∠ACB = ∠CAD. Следовательно, AD || BC.

(48 баллов)