. В вершинах куба записали восемь различных натуральных чисел, а на каждой грани –– сумму четырех чисел в её вершинах. Оказалось, что число на каждой грани в 1,5 раза больше или в 1,5 раза меньше числа на противоположной грани. Может ли сумма чисел в вершинах быть равной 2016?
g;
пж
Х - сумма чисел на одной грани 1,5х - сумма чисел на противоположной грани х+1,5х=2016 2,5х=2016 х=806,4 сумма всех чисел не может быть равна 2016, т.к. по условию все числа натуральные.
А откуда 2,5 взялось?
1 + 1,5=2,5