Как упростить уравнение?

0 голосов
26 просмотров

Как упростить уравнение?


Математика (14 баллов) | 26 просмотров
Дано ответов: 2
0 голосов

1)Научитесь вычислять степени с натуральными показателями. При умножении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней складываются b^m+b^n=b^(m+n). При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя b^m:b^n=b^(m-n). При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (b^m)^n=b^(mn)При возведении в степень произведения чисел в эту степень возводится каждый множитель. (abc)^m=a^m*b^m*c^m

2)Раскладывайте многочлены на множители, т. е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, m^8+2*m^4*n^4+n^8=(m^4)^2+2*m^4*n^4+(n^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ax^2+bx+c.

3)Как можно чаще сокращайте дроби. Например, (2*a^2*b)/(a^2*b*c)=2/(a*c). Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т. к. легче проверить результаты промежуточных действий.

4)Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.

(128 баллов)
0 голосов

Смотря какое ведь каждые выражения упрошаются по разному

(79 баллов)