0} \atop {t \leq -\frac{2}{3}}} \right. " alt="1)\; \sqrt{log_{x}25+3}= \frac{1}{log_5x} \; ,\; ODZ:\; \left \{ {{x\ \textgreater \ 0,\; log_5x\ne 0} \atop {log_{x}25+3 \geq 0}} \right. \; , \left \{ {{x\ \textgreater \ 0\; ,\; x\ne 1} \atop {\frac{1}{log_{25}x}+3}\geq 0}} \right. \\\\\frac{1}{log_{25}x}+3=\frac{1}{\frac{1}{2}log_5x}+3=\frac{2}{log_5x}+3= \frac{2+3log_5x}{log_5x} \geq 0\; ,\\\\t=log_5x\; ,\; \frac{2+3t}{t} \geq 0\; ,\; \; \; +++(-\frac{2}{3})---(0)+++\; \; \left [ {{t > 0} \atop {t \leq -\frac{2}{3}}} \right. " align="absmiddle" class="latex-formula">
0\; ,\; x > 1\\\\ODZ:\; \; x\in (0;\frac{1}{\sqrt[3]{25}}\, ]\cup (1,+\infty )\\\\log_{x}25+3=\frac{1}{log^2_5x}\; ,\; \; \frac{2}{log_5x}+3-\frac{1}{log^2_5x}=0\\\\ \frac{2log^2_5x+3log_5x-1}{log^2_5x}=0\; ,\; \; 2log^2_5x+3log_5x-1=0\; \Rightarrow \\\\log_5x=-1\; \; ili\; \; log_5x=\frac{1}{3}\\\\x=5^{-1}=\frac{1}{5}=0,2\; \; ili\; \; x=5^{\frac{1}{3}}=\sqrt[3]5\approx 1,71\\\\Otvet:\; \; 0,2\; \; ili\; \; \sqrt[3]5\; . " alt="log_5x > 0\; ,\; x > 1\\\\ODZ:\; \; x\in (0;\frac{1}{\sqrt[3]{25}}\, ]\cup (1,+\infty )\\\\log_{x}25+3=\frac{1}{log^2_5x}\; ,\; \; \frac{2}{log_5x}+3-\frac{1}{log^2_5x}=0\\\\ \frac{2log^2_5x+3log_5x-1}{log^2_5x}=0\; ,\; \; 2log^2_5x+3log_5x-1=0\; \Rightarrow \\\\log_5x=-1\; \; ili\; \; log_5x=\frac{1}{3}\\\\x=5^{-1}=\frac{1}{5}=0,2\; \; ili\; \; x=5^{\frac{1}{3}}=\sqrt[3]5\approx 1,71\\\\Otvet:\; \; 0,2\; \; ili\; \; \sqrt[3]5\; . " align="absmiddle" class="latex-formula">