![image](https://tex.z-dn.net/?f=1%29%5C%3B+%5Csqrt%7Blog_%7Bx%7D25%2B3%7D%3D+%5Cfrac%7B1%7D%7Blog_5x%7D+%5C%3B+%2C%5C%3B+ODZ%3A%5C%3B++%5Cleft+%5C%7B+%7B%7Bx%5C+%5Ctextgreater+%5C+0%2C%5C%3B+log_5x%5Cne+0%7D+%5Catop+%7Blog_%7Bx%7D25%2B3+%5Cgeq+0%7D%7D+%5Cright.+%5C%3B+%2C+%5Cleft+%5C%7B+%7B%7Bx%5C+%5Ctextgreater+%5C+0%5C%3B+%2C%5C%3B+x%5Cne+1%7D+%5Catop+%7B%5Cfrac%7B1%7D%7Blog_%7B25%7Dx%7D%2B3%7D%5Cgeq+0%7D%7D+%5Cright.+%5C%5C%5C%5C%5Cfrac%7B1%7D%7Blog_%7B25%7Dx%7D%2B3%3D%5Cfrac%7B1%7D%7B%5Cfrac%7B1%7D%7B2%7Dlog_5x%7D%2B3%3D%5Cfrac%7B2%7D%7Blog_5x%7D%2B3%3D+%5Cfrac%7B2%2B3log_5x%7D%7Blog_5x%7D++%5Cgeq+0%5C%3B+%2C%5C%5C%5C%5Ct%3Dlog_5x%5C%3B+%2C%5C%3B+%5Cfrac%7B2%2B3t%7D%7Bt%7D+%5Cgeq+0%5C%3B+%2C%5C%3B+%5C%3B+%5C%3B+%2B%2B%2B%28-%5Cfrac%7B2%7D%7B3%7D%29---%280%29%2B%2B%2B%5C%3B+%5C%3B++%5Cleft+%5B+%7B%7Bt+%3E+0%7D+%5Catop+%7Bt+%5Cleq+-%5Cfrac%7B2%7D%7B3%7D%7D%7D+%5Cright.+)
0} \atop {t \leq -\frac{2}{3}}} \right. " alt="1)\; \sqrt{log_{x}25+3}= \frac{1}{log_5x} \; ,\; ODZ:\; \left \{ {{x\ \textgreater \ 0,\; log_5x\ne 0} \atop {log_{x}25+3 \geq 0}} \right. \; , \left \{ {{x\ \textgreater \ 0\; ,\; x\ne 1} \atop {\frac{1}{log_{25}x}+3}\geq 0}} \right. \\\\\frac{1}{log_{25}x}+3=\frac{1}{\frac{1}{2}log_5x}+3=\frac{2}{log_5x}+3= \frac{2+3log_5x}{log_5x} \geq 0\; ,\\\\t=log_5x\; ,\; \frac{2+3t}{t} \geq 0\; ,\; \; \; +++(-\frac{2}{3})---(0)+++\; \; \left [ {{t > 0} \atop {t \leq -\frac{2}{3}}} \right. " align="absmiddle" class="latex-formula">
![image](https://tex.z-dn.net/?f=log_5x+%3E+0%5C%3B+%2C%5C%3B+x+%3E+1%5C%5C%5C%5CODZ%3A%5C%3B+%5C%3B+x%5Cin+%280%3B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7B25%7D%7D%5C%2C+%5D%5Ccup+%281%2C%2B%5Cinfty+%29%5C%5C%5C%5Clog_%7Bx%7D25%2B3%3D%5Cfrac%7B1%7D%7Blog%5E2_5x%7D%5C%3B+%2C%5C%3B+%5C%3B+%5Cfrac%7B2%7D%7Blog_5x%7D%2B3-%5Cfrac%7B1%7D%7Blog%5E2_5x%7D%3D0%5C%5C%5C%5C+%5Cfrac%7B2log%5E2_5x%2B3log_5x-1%7D%7Blog%5E2_5x%7D%3D0%5C%3B+%2C%5C%3B+%5C%3B+2log%5E2_5x%2B3log_5x-1%3D0%5C%3B+%5CRightarrow+%5C%5C%5C%5Clog_5x%3D-1%5C%3B+%5C%3B+ili%5C%3B+%5C%3B+log_5x%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%5C%5Cx%3D5%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B5%7D%3D0%2C2%5C%3B+%5C%3B+ili%5C%3B+%5C%3B+x%3D5%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%3D%5Csqrt%5B3%5D5%5Capprox+1%2C71%5C%5C%5C%5COtvet%3A%5C%3B+%5C%3B+0%2C2%5C%3B+%5C%3B+ili%5C%3B+%5C%3B+%5Csqrt%5B3%5D5%5C%3B+.+)
0\; ,\; x > 1\\\\ODZ:\; \; x\in (0;\frac{1}{\sqrt[3]{25}}\, ]\cup (1,+\infty )\\\\log_{x}25+3=\frac{1}{log^2_5x}\; ,\; \; \frac{2}{log_5x}+3-\frac{1}{log^2_5x}=0\\\\ \frac{2log^2_5x+3log_5x-1}{log^2_5x}=0\; ,\; \; 2log^2_5x+3log_5x-1=0\; \Rightarrow \\\\log_5x=-1\; \; ili\; \; log_5x=\frac{1}{3}\\\\x=5^{-1}=\frac{1}{5}=0,2\; \; ili\; \; x=5^{\frac{1}{3}}=\sqrt[3]5\approx 1,71\\\\Otvet:\; \; 0,2\; \; ili\; \; \sqrt[3]5\; . " alt="log_5x > 0\; ,\; x > 1\\\\ODZ:\; \; x\in (0;\frac{1}{\sqrt[3]{25}}\, ]\cup (1,+\infty )\\\\log_{x}25+3=\frac{1}{log^2_5x}\; ,\; \; \frac{2}{log_5x}+3-\frac{1}{log^2_5x}=0\\\\ \frac{2log^2_5x+3log_5x-1}{log^2_5x}=0\; ,\; \; 2log^2_5x+3log_5x-1=0\; \Rightarrow \\\\log_5x=-1\; \; ili\; \; log_5x=\frac{1}{3}\\\\x=5^{-1}=\frac{1}{5}=0,2\; \; ili\; \; x=5^{\frac{1}{3}}=\sqrt[3]5\approx 1,71\\\\Otvet:\; \; 0,2\; \; ili\; \; \sqrt[3]5\; . " align="absmiddle" class="latex-formula">