Помогите решить систему уравнений с параметром, ответ должен получиться 1-(корень из 10)

0 голосов
31 просмотров

Помогите решить систему уравнений с параметром, ответ должен получиться
1-(корень из 10)


image

Алгебра (61 баллов) | 31 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
\left \{ {{y^2-x-2=|x^2-x-2|} \atop {x-y=a}} \right.

Сначала разберемся с модулем.
x^2 - x - 2 = (x + 1)(x - 2)
1) При x < -1 будет x^2 - x - 2 > 0; |x^2 - x - 2| = x^2 - x - 2
\left \{ {{y^2-x-2=x^2-x-2} \atop {x-y=a}} \right.
\left \{ {{y^2=x^2} \atop {x-y=a}} \right.
\left \{ {{(y-x)(y+x)=0} \atop {x-y=a}} \right.
1 уравнение имеет 2 решения: y = x, тогда а = 0; y = -x, тогда а = 2х
При а = 0 будет бесконечное множество решений y = x < -1
При y = -x будет a = x + x = 2x, это одно решение при любом а
a1 = 0

2) При x ∈ [-1; 2) будет x^2 - x - 2 < 0; |x^2 - x - 2| = -x^2 + x + 2
\left \{ {{y^2 - x - 2=-x^2 + x + 2} \atop {x-y=a}} \right.
\left \{ {{y^2 = -x^2+2x+4} \atop {x-y=a}} \right.
Правая часть 1 уравнения должна быть неотрицательна
-x^2 + 2x + 4 >= 0
(x - 1 - √5)(x - 1 + √5) <= 0<br>x ∈ [1 -√5; 1 + √5]
Подставляем y из 2 уравнения в 1 уравнение
(x - a)^2 = -x^2 + 2x + 4
x^2 - 2ax + a^2 = -x^2 + 2x + 4
2x^2 - 2x(a+1) + (a^2-4) = 0
D = -4a^2 + 8a + 36 >= 0;
a = [1 - sqrt(10); 1+sqrt(10)]

3) При x >= 2 будет x^2 - x - 2 > 0; |x^2 - x - 2| = x^2 - x - 2
\left \{ {{y^2-x-2=x^2-x-2} \atop {x-y=a}} \right.
\left \{ {{y^2=x^2} \atop {x-y=a}} \right.
\left \{ {{(y-x)(y+x)=0} \atop {x-y=a}} \right.
1 уравнение имеет 2 решения: y = x, тогда а = 0; y = -x, тогда а = 2х
При а = 0 будет бесконечное множество решений y = x > 2
При y = -x будет a = x + x = 2x, это одно решение при любом а
a2 = a1 = 0

В 1 части, если a =/= 0, то решения есть при a <= -2 U a >= 4
Во 2 части a = [1 - sqrt(10); 1+sqrt(10)]
В 3 части a = 0
Таким образом, на отрезке [1-sqrt(10); -2] будут решения и в 1 и во 2 части. Всего 3 или 4 решения.
Но на концах отрезка, при x = 1-sqrt(10) и при x = -2 будет по 2 решения.
Ну и при а = 0 из 3 части получаем x = y >= 2 - бесконечное множество решений.

Ответ: а = (1-sqrt(10); -2) U {0}









(320k баллов)
0

Интересно, куда же оно пропадает при решении?

0

Ошибка в том, что при некоторых а, система имеет одновременно одно решение на интервале x<-1 и два решения x ∈ [-1; 2). Всего 3.

0

надо было правильно объединить результаты частей 1) и 2). Ну и 3) тоже, но они не влияют.

0

Да, решил. Если все-таки решить уравнение из части 2, то получится

0

D = -4a^2 + 8a + 36 >= 0; a = [1 - sqrt(10); 1+sqrt(10)].

0

А в 1 части, если a =/= 0, то решения есть при a <= -2 U a >= 4

0

Таким образом, на отрезке [1-sqrt(10); -2] будут решения и в 1 и во 2 части. Всего 3 или 4 решения.

0

Ну и при а = 0 из 3 части получаем x = y >= 2

0

Только интервал (1-sqrt(10); -2) - крайние точки не включаются.

0

Ну да, в крайних будет по 2 решения.