В треугольнике АВС угол В в два раза больше угла А, а длина стороны ВС равна 40. Найдите сторону АВ, если длина биссектрисы ВD равна 39.
△CBD ∾ △CAB по первому признаку подобия (∠CBD = ∠BAC = α; ∠BCA - общий) BC/AC = DC/BC AD = BD = 39 (∠BAC = ∠ABD; △BDA - равнобедренный) AC = AD + DC = 39 + DC 40/(39 + DC) = DC/40 DC = 25 DC/BC = BD/AB AB = BD·BC/DC = 312/25=62,4