Пе­ри­метр рав­но­бед­рен­но­го тре­уголь­ни­ка равен 196, а ос­но­ва­ние — 96. Най­ди­те...

0 голосов
211 просмотров

Пе­ри­метр рав­но­бед­рен­но­го тре­уголь­ни­ка равен 196, а ос­но­ва­ние — 96. Най­ди­те пло­щадь тре­уголь­ни­ка.
Очень срочно !!!отдаю 15 баллов!!


Геометрия (23 баллов) | 211 просмотров
Дан 1 ответ
0 голосов

P = 2x + y  (x - боковые стороны, y - основание) 
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50

итого: x = 50, y = 96 
нам не хватает высоты, для нахождения площади. 
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) 
по теореме Пифагора 
h = √(x^2 - (y/2)^2)
h =
√(50^2 - 48^2) =  √196 = 14

Площадь треугольника: половина основания на высоту, основание - y, высота - h 
тогда: S=1/2*hy = 96*14/2 = 672.
Ответ: 672 

(709 баллов)