РЕШИТЕ ЗАДАЧУ! Дано: треугольник ABC равнобедренный AB=BC=25 AC=14 Найти : медианы AA1 ,...

0 голосов
149 просмотров

РЕШИТЕ ЗАДАЧУ!
Дано: треугольник ABC равнобедренный
AB=BC=25
AC=14
Найти : медианы AA1 , BB1, CC1


image

Геометрия (161 баллов) | 149 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Вариант решения. 
Пусть точка пересечения медиан будет О. 
Так как ∆ АВС - равнобедренный, медиана ВВ₁ является и его высотой.
 ВВ₁ найдем из прямоугольного ∆ АВВ₁ со сторонами АВ=25 -гипотенуза, АВ₁=АС:2=7 - меньший катет. Этот треугольник из троек Пифагора с отношением сторон 7:24:25 , поэтому ВВ1=24;  по т.Пифагора получим тот же результат. :
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины. ⇒
В₁О=24:3=8
Из треугольника АОВ₁ по т. Пифагора найдем 2/3 медианы АА₁:
АО²=АВ₁²+ОВ₁²=49+64=130
АО=√113
AA₁=(√113):2×3=1,5√113
Медианы равнобедренного треугольника из вершин при основании равны. 
СС₁=АА₁=1,5√113

(228k баллов)
0 голосов

Медиана BB1=корень из 25^2-7^2=24(по свойству высоты в равнобедренном треугольнике)
Я пыталась найти AA1 и CC1(они будут равны) через параллелограмм, но странный ответ получается, так что не знаю (см.фотку)


image
(381 баллов)
0

медианы AA1 и CC1???

0

Медианы к боковым сторонам так и получаются. √1017):2=1,5√113