Сумма первого, третьего и четвертого членов геометрической прогрессии с положительным...

0 голосов
130 просмотров

Сумма первого, третьего и четвертого членов геометрической прогрессии с положительным знаменателем равна 279, а сумма третьего, пятого и шестого членов этой прогрессии равна 31. Найдите восьмой член прогрессии.


Алгебра (78 баллов) | 130 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

q>0,

b1+b3+b4=279,

b3+b5+b6=31,

 

b1+b1q^2+b1q^3=279,

b1q^2+b1q^4+b1q^5=31,

 

b1(1+q^2+q^3)=279,

b1q^2((1+q^2+q^3)=31,

 

279q^2=31,

q^2=1/9,

q1=-1/3<0,</p>

q2=1/3;

 

q=1/3,

b1=279/(1+q^2+q^3),

b1=243,

 

b8=b1q^7,

b8=243*(1/3)^7=3^5/3^7=1/9.

(93.5k баллов)