Решите неравенства 1) log2(x+3)>log3(2x-15) 2) log0,2(x+3)>log0,2(2x-15)

0 голосов
51 просмотров

Решите неравенства 1) log2(x+3)>log3(2x-15) 2) log0,2(x+3)>log0,2(2x-15)


Алгебра (14 баллов) | 51 просмотров
Дан 1 ответ
0 голосов

Решение
1) log₂ (x+3) > log₂ (2x-15)
ОДЗ: x + 3 > 0, x > - 3
2x - 15 > 0
x > 7,5
∈ (7,5 ; + ∞)
так как 2 > 1, то
x + 3 > 2x - 15
x < 18
С учётом ОДЗ
x ∈ (7,5 ; 18) 
Ответ: x ∈ (7,5 ; 18) 
2) log0,2(x+3)>log0,2(2x-15)
ОДЗ: x + 3 > 0, x > - 3
2x - 15 > 0
x > 7,5
∈ (7,5 ; + ∞)
так как 0 < 0,2 < 1, то
x + 3 < 2x - 15
x > 18
x ∈ (18 ; + ∞)
Ответ: x ∈ (18 ; + ∞)

(61.9k баллов)