1)Найти наибольшее значение функции : f (x)=-x^2+10x+6 2)Разность корней уравнений...

0 голосов
41 просмотров

1)Найти наибольшее значение функции : f (x)=-x^2+10x+6
2)Разность корней уравнений 5x^2+4x+c=0 равна 24, тогда с равно?
3) укажите промежуток ,удовлетворяющий неравенству:
1-2y+y^2>0


Алгебра (66 баллов) | 41 просмотров
Дан 1 ответ
0 голосов

1).Найдем координату У вершины этой параболы. Сначала вычислим координату Х вершины:
Xв.= -b/2a=-10/-2=5
Y(5) = -5^2+10*5+6=31
Yнаиб.=31 ( ветви параболы направлены вниз).
2) По теореме Виета x1*x2=c/a=c/5; x1+x2=-b/a=-4/5
По условию x1-x2=24
x1=x2+24
Подставим (x2+24) в одну из формул Виета:
(x2+24)+x2=-4/5
2X2+24=-4/5
2x2=-4/5-24
2x2=-24,8
x2=-12,4
Найдем теперь X1:
X1+X2=-4/5
x1-12,4=-4/5
x1=11,6
Теперь найдем значение "c":
x1*x2=c/5
11,6*(-12,4)=c/5
-143,84=c/5
c=-719,2
3). 1-2y+y^2>0
Разложим на множители это неравенство:
y^2-2y+1=0
(y-1)^2=0
(y-1)(y-1)>0
(- бесконечность;1)U (1;+ бесконечность)


(14.8k баллов)