В
А D С
Обозначим через D середину АС и проведем через эту точку перпендикуляр к АС. Пусть этот перпендикуляр пересекается с прямой АВ в точке В1, а с прямой СВ в точке В2.
Тогда по второму признаку треугольники АDВ1 и СDВ2 равны,
поскольку АD = СD , углы B1АD и В2СD равны по условию, а равенство углов В1DА и В2DС следует из этого, что В1 и В2 лежат на перпендикуляре к АС, проходящем через D.
Таким образом, DВ1 = DВ2 , точки B1 и В2 должны совпасть друг с другом, а значит, совпасть с точкой В.
Следовательно, АВ = СВ.