Вычислите значение производной функции в заданной точке:

0 голосов
30 просмотров

Вычислите значение производной функции в заданной точке:
f(x)=\frac{2x-3}{sinx}, \quad x=\frac{\pi}{4}


Алгебра (25.6k баллов) | 30 просмотров
Дан 1 ответ
0 голосов

F(x)=(2x-3)/sin x
f `(x)=(2sinx-cosx*(2x-3))/(sin^2 (x))
f `(п/4)=(2sin(п/4)-cos (п/4)*(2*п/4 - 3))/(sin^2 (п/4))=(√2-√2/2*(п/2-3))/(1/2)=2(√2-п√2/4+3√2/2)=2√2-п√2/2+3√2=5√2-п√2/2=√2(5-п/2)

(57.3k баллов)
0

(2sinx+cosx*(2x-3))   Разве не минус должен быть между 2sinx и cosx?

0

(2x-3)' (sinx) - (2x-3) (sinx)' = 2sinx - cosx (2x-3) я написал так