Решение
f(x) = 5*(sinx - cosx) + √2 * cos5x
f`(x) = 5*cosx + 5*sinx - 5√2sin5x
f`(x) = 0
5cosx + 5sinx - 5√2sin5x = 0
(cosx + sinx) - √2sin5x = 0
√2sin(π/4 + x) - √2sin5x = 0
- √2(sin5x - sin(π/4 + x)) = 0
sin5x - sin(π/4 + x) = 0
sin5x = sin(π/4 + x)
1) 5x = 3π/4 - x + 2πn, n ∈ Z
6x = 3π/4 + 2πn, n ∈ Z
x₁ = π/8 + πn/3, n ∈ Z
2) 5x = π/4 + x + 2πk, k ∈ Z
4x = π/4 + 2πk, k ∈ Z
x₂ = π/16 + πk/2, k ∈ Z