sin(x)^2 = 1 - cos(x)^2 -> 16^(cos(x)^2) = 16^(1-sin(x)^2) = 16/(16^(sin(x)^2) = 16/z, получим уравнение z + 16/z = 10 -> z^2 + 16 = 10z -> z^2 - 10z + 16 = 0, z1 = 8 z2 = 2 16^(sin(x)^2) = 8 -> 2^(4*sin(x)^2) = 2^3 -> sin(x)^2 = 3/4 -> sin(x) = + - кор(3)/2 -> x = + - пи/3 точно так же получаете x = пи/4