Сократить дробь 9х^2-4у^2/20у^2-60ху+45х^2 и найти ее значение при х= 2/3 , у=0,75

0 голосов
141 просмотров

Сократить дробь 9х^2-4у^2/20у^2-60ху+45х^2 и найти ее значение при х= 2/3 , у=0,75


Алгебра (12 баллов) | 141 просмотров
Дан 1 ответ
0 голосов
\frac{9 x^{2} -4 y^{2} }{20 y^{2} -60xy+45 x^{2} }=\frac{(3x-2y)(3x+2y)}{ (2 \sqrt{5}y-3 \sqrt{5}x )^{2} }=\frac{(3x-2y)(3x+2y)}{5 (3x-2y)^{2} }=\frac{3x+2y}{5(3x-2y)}

При x= \frac{2}{3} ; y=0.75

\frac{3* \frac{2}{3}+2*0.75 }{5( 3*\frac{3}{2}-2*0.75 )}=\frac{3.5}{5*0.5} = \frac{3.5}{2.5} =1.4
(3.2k баллов)