Решить уравнение:
sin(x)+cos(x)=1+sin(2x)
sinx+cosx=1+2sin(2x)
sinx+cosx=1+2sinxcosx
sinx+cosx=(sinx)^2+(cosx)^2+2sinxcosx
sinx+cosx=(sinx+cosx)^2
1) sinx+cosx=1
2) sinx+cosx=0
sinx=-cosx
sinx/cosx=-1
tgx=-1
x=-Pi/4+Pi*n (n Є N)
(sinx+cosx)^2-(sinx+cosx)=0
x=-П/4+Пk
sinx-+cosx=1
х=П/2+2Пk
x=2Пk