Sin2x+cos(x+π/4)=-2 ;
cos(x+π/4) = -3+ (cos²x + sin²x) -sin2x ;
cos(x+π/4) = -3+ (cos²x -2sinxcosx + sin²x) ;
cos(x+π/4) = -3+ (cosx - sinx)² ;
* * * cosx -sinx = √2(cosx*1/√2 +sinx*1/√2)=√2(cosx*cosπ/4 +sinx*sinπ/4) = √2cos(x- π/4) * * *
cos(x+π/4) =-3 +(√2cos(x- π/4))² ;
2cos²(x- π/4) - cos(x+π/4) -3 =0 ;
* * * замена t =cos(x- π/4) ; -1≤t ≤1 * * *
2t² - t -3=0 ;
t₁=(1 +5)/4 =3/2 >1 не решение исходного уравнения .
t₂=(1 -5)/4 =-1 ⇒cos(x+π/4) =-1⇔x+π/4=π+2πk, k∈Z ⇔x=3π/4+2πk, k∈Z.
ответ: x=3π/4+2πk, k∈Z .
* * * * * * *
sin2x+cos(x+pi/4)=-2 ;
* * * -1≤cos(x+π/4)≤1⇒ -√2≤cos(x+π/4)≤√2 ≈1,41 * **
* * * cos(x+π/4) =cosx*cosπ/4 -sinx*sinπ/4 =(√2/2)*(cosx -sinx) * * *
2sinxcosx +((√2)/2) *(cosx -sinx) = -3 +(cos²x +sin²x) ;
((√2)/2)*(cosx - sinx) = -3 + (cos²x - 2sinxcosx +sin²x) ;
((√2)/2)*(cosx - sinx) = -3 + (cosx - sinx)²
2(cosx -sinx)² -√2*(cosx - sinx) -6 =0 ; * * * замена t =cosx -sinx * * *
2t² - √2t -6=0 ;
t₁=(√2 -5√2)/4 = -√2 ;
t₂=(√2 +5√2)/4 =3√2 /2 .
---
а) cosx -sinx= -√2 ⇔√2cos(x+π/4) = -√2⇔cos(x+π/4) = -1 ;
x+π/4=π+2πk, k∈Z . x=3π/4+2πk, k∈Z .
---
б) cosx -sinx= (3√2)/2 ⇔√2cos(x+π/4) =(3√2)/2 ⇔cos(x+π/4) =3/2 >1
нет корней