Решите, то, что справа заранее благодарю !

0 голосов
29 просмотров

Решите, то, что справа заранее благодарю !


image

Математика (15 баллов) | 29 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

А)
\left \{ {{ \frac{x}{y} + \frac{y}{x} =- \frac{5}{2} } \atop { x^{2} - y^{2} = \frac{13}{4} }} \right.
Замена \frac{x}{y} =t; \frac{y}{x} = \frac{1}{t}; x=t*y
\left \{ {{t+ \frac{1}{t} = -\frac{5}{2} } \atop {(t*y)^2-y^2=y^2*(t^2-1)= \frac{13}{4} }} \right.

2t^2 + 2 = -5t
2t^2 + 5t + 2 = 0
(t + 2)(2t + 1) = 0
t1 = x/y = -2; x = -2y
t2 = x/y = -1/2; x = -y/2

1) y^2*(t^2 - 1) = 13/4
y^2*(2^2 - 1) = 3y^2 = 13/4
y^2 = 13/12
y1=- \sqrt{ \frac{13}{12} }; x1=-2y= \sqrt{ \frac{13*4}{12} }= \sqrt{ \frac{13}{3} }
y2= \sqrt{ \frac{13}{12} }; x2=-2y=- \sqrt{ \frac{13*4}{12} }=-\sqrt{ \frac{13}{3} }

2) y^2*(t^2 - 1) = 13/4
y^2*((1/2)^2 - 1) = -3/4*y^2 = 13/4
y^2 < 0, Решений нет

б)
\left \{ {{x^{2} + y^{2} = 68} \atop {\frac{x}{y} - \frac{y}{x} =\frac{17}{4} }} \right.
Замена \frac{x}{y} =t; \frac{y}{x} = \frac{1}{t}; x=t*y
\left \{ {{t- \frac{1}{t} = \frac{17}{4} } \atop {(t*y)^2+y^2=y^2*(t^2+1)= 68 }} \right.

4t^2 - 4 = 17t
4t^2 - 17t - 4 = 0
D = 289 - 4*4(-4) = 289 + 64 = 353
1) t1 = (17 - √353)/8 = x/y
t^2+1= \frac{(17- \sqrt{353})^2 }{64}+1= \frac{289+353+64-34 \sqrt{353} }{64} = \frac{353-17 \sqrt{353}}{32}

y^2*(t^2+1)=y^2*\frac{353-17 \sqrt{353}}{32}=68
y^2= \frac{68*32}{353-17 \sqrt{353}}= \frac{64*34}{353-17 \sqrt{353}}
x=t*y=(17 - \sqrt{353})/8*y

2) t2 = (17 + √353)/8 = x/y
Решается точно также

в)
\left \{ {{|x|+|y|=6} \atop {x^2-y^2=24}} \right.
1) Пусть x < 0, y < 0. Тогда |x| = -x, |y| = -y
\left \{ {{-x-y=6} \atop {x^2-y^2=24}} \right.
\left \{ {{x+y=-6} \atop {(x+y)(x-y)=24}} \right.
\left \{ {{x+y=-6} \atop {x-y=-4}} \right.
\left \{ {{x=-5} \atop {y=-1}} \right.

2) Пусть x < 0, y > 0. Тогда |x| = -x, |y| = y
\left \{ {{-x+y=6} \atop {x^2-y^2=24}} \right.
\left \{ {{x-y=-6} \atop {(x+y)(x-y)=24}} \right.
\left \{ {{x-y=-6} \atop {x+y=-4}} \right.
\left \{ {{x=-5} \atop {y=1}} \right.

3) Пусть x > 0, y < 0. Тогда |x| = x, |y| = -y
\left \{ {{x-y=6} \atop {x^2-y^2=24}} \right.
\left \{ {{x-y=6} \atop {(x+y)(x-y)=24}} \right.
\left \{ {{x-y=6} \atop {x+y=4}} \right.
\left \{ {{x=5} \atop {y=-1}} \right.

4) Пусть x > 0, y > 0. Тогда |x| = x, |y| = y
\left \{ {{x+y=6} \atop {x^2-y^2=24}} \right.
\left \{ {{x+y=6} \atop {(x+y)(x-y)=24}} \right.
\left \{ {{x+y=6} \atop {x-y=4}} \right.
\left \{ {{x=5} \atop {y=1}} \right.

г)
\left \{ {{|x|-|y|=4} \atop {x^2+y^2=41}} \right.
1) Пусть x < 0, y < 0. Тогда |x| = -x, |y| = -y
\left \{ {{-x+y=4} \atop {x^2+y^2=41}} \right.

\left \{ {{x^2-2xy+y^2=16} \atop {x^2+y^2=41}} \right.
Подставляем 2 ур-ние в 1 ур-ние
41-2xy=16
xy= \frac{41-16}{2}= \frac{25}{2} =12,5

\left \{ {{x-y=-4} \atop {xy=12,5}} \right.
<img src="https://tex.z-dn.net/

(320k баллов)