Найдите сумму всех целых решений неравенства. См. вложения.

0 голосов
29 просмотров

Найдите сумму всех целых решений неравенства.
См. вложения.


image

Алгебра (13.7k баллов) | 29 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

(x^3-8x^2+15x)/(x^2-7x+12) * 1/(4-x) ≥ 0
x(x^2-8x+15)/(x^2-7x+12)  * 1/(x-4) ≤ 0
x(x-3)(x-5)/(x-3)(x-4) * 1/(x-4) ≤ 0
x(x-5)/(x-4)^2 ≤ 0 (! x не равен 3!)
   +        -            -            -               +
----[0]-----(3)-----(4)------[5]-----> x

x = [0;3)U(3;4)U(4;5]

0+1+2+5=3+5=8

(5.9k баллов)
0 голосов

Надо разложить квадратные трехчлены на множители, в числителе первой дроби вынести х за скобки: x(x^2 - 8x + 15) /( x^2 - 7x + 12) * 1 / (4 - x).

Трехчлен x^2 - 8x + 15 приравниваем нулю и находим корни: х1 = 3, х2 = 5.

Трехчлен x^2 - 7x + 12 приравниваем нулю и находим корни: х1 = 3, х2 = 4.

Трехчлен вида аx^2 + bx + c = a(x - x1)(x - x2).

Тогда дроби записываем в виде (x(x - 3)(x - 5)) / ((x -3)(x - 4)) * 1 / (4 - x).

Сократив на x - 3 и приведя к общему знаменателю, получим 5x - x^2 ≥ x^2 - 8x + 16 или

2x^2 - 13x + 16 ≥ 0,  корни равны х1 ≈ 1,65    х2 ≈ 4,85.

Целыми решениями неравенства являются значения 2, 3 и 4, а сумма = 9.

(309k баллов)