Чертёж ты уж как-нибудь сама, ладно? Параболу умеешь рисовать?
Сначала нарисуй, а потом читай дальше. Готово? Ок, поехали.
Во-первых, нам нужно заметить, что эти две линии пересекаются в двух точках. Что же это за точки? Давай решим уравнение
x^2 = x + 2
Увау! Квадратное. Ладно, дискриминант тоже сама выпиши, а я уж позволю себе решить его устно, и узнаю, что корни будут -1 и 2. По теореме Безу решил, если что.
Смотрим на чертёж ещё раз. Искомая фигура ограничена снизу параболой, а сверху прямой. И они пересекаются в точках -1 и 2. Эдакая получается долька.
Как же найти площадь дольки? Очень просто - нужно сначала взять площадь трапеции, имеющей вершинами две точки пересечения графиков, и две точки на оси ОХ с координатами -1 и 2. Для наглядности можно заштриховать наклонной штриховкой эту трапецию. Пусть это будет площадь S1.
А теперь возьмём площадь ПОД параболой, в тех же пределах, пусть это будет площадь S2. Разница S = S1 - S2 и будет ответом.
Ок, дело осталось за малым - найти S1 и S2.
S1 ищем как учили в геометрии - произведение полусуммы оснований на высоту.
Одно (левое ) основание у нас есть отрезок (-1;0) - (-1;1), и его длина равна 1. Второе (правое) основание есть отрезок (2;0) - (2;4), и его длина равна 4. Высота трапеции - отрезок (-1;0) - (2;0), его длина равна 3. Подставляем в формулу, получаем (1 + 4 ) / 2 * 3 = 7,5.
S2 ищем как учили в алгебре - первообразная в правой точке, минус первообразная в левой точке. Чему же равна первообразная для параболы? - это кубическая парабола, и её уравнение имеет вид
F = 1/3 * x^3
Чему равно F(2)? F(2) = 1/3 * 2^3 = 8/3
Чему равно F(-1)? F(2) = 1/3 * (-1)^3 = -1/3
Чему равно F(2) - F(1) ? F(2) - F(1) = 8/3 - (-1/3) = 9/3 = 3.
Итак, мы пришли к тому, что S1 = 7,5, и S2 = 3
Отсюда получаем ответ: S = S1 - S2 = 7,5 - 3 = 4,5.
Так? Проверь за мной что не ошибся - доверяй, но проверяй.