В треугольнике ABC высота AD ** 4 с меньше стороны BC. Сторона АС равна 5 см. найдите...

0 голосов
79 просмотров

В треугольнике ABC высота AD на 4 с меньше стороны BC. Сторона АС равна 5 см. найдите периметр треугольника АВС, если его площадь равна 16 см^2


Геометрия (139 баллов) | 79 просмотров
Дан 1 ответ
0 голосов

Пусть AD=x, тогда ВС=х+4. Площадь треугольника равна:

S_{ABC}= \frac{1}{2}*AD*BC=16\\
 \frac{x(x+4)}{2} =16\\
x^{2}+4x-32=0
\\D= 16+32*4=144
\\x_{1}=4;x_{2}=-8

Длина не может быть отрицательной, поэтому х=4, значит AD=4, ВС=4+4=8. По теореме Пифагора найдём DC:

DC= \sqrt{AC^{2}-AD^{2}}= \sqrt{25-16} =3 =\ \textgreater \ BD=8-3=5

А теперь по теореме Пифагора найдём AB:

AB= \sqrt{AD^{2}+BD^{2}}= \sqrt{16+25} = \sqrt{41}

А теперь найдём периметр:

P_{ABC}=AB+BC+AC= \sqrt{41}+8+5=13+ \sqrt{41} см

Ответ: 13+ \sqrt{41} см

(4.6k баллов)