Номер 307(а) и 308(б) пожалуйста

0 голосов
69 просмотров

Номер 307(а) и 308(б)
пожалуйста


image

Алгебра | 69 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

307 a)
y`=(x⁴-4x+5)`=4x³-4
y`=0
4x³-4=0
x=1
1∈[-3;2]  и является внутренней точкой этого отрезка.

Находим знак производной:
[-3]___-____(1)_+_[2]

x=1- точка минимума, производная при переходе через точку х=1 меняет знак с - на +

Находим значения в этой точке и на концах отрезка:
у(1)=1⁴-4·1+5=2
у(-3)=(-3)⁴-4·(-3)+5=98
у(2)=2⁴-4·2+5=16-8+5=13

Наибольшее у(-3)=98
Наименьшее у(1)=2

308 а)
у`=(2x³-(3/2)x²+2)`=6x²-3x
y`=0
6x²-3x=0
3x(2x-1)=0
x=0    x=1/2

х=1\2 - внутренняя точка отрезка [0;3]

Находим знак производной

[0]_-_(1/2)____+_____[3]

x=1/2- точка минимума, при переходе через точку х=1/2 производная меняет знак с - на +.

Находим значения функции в этой точке и на концах отрезка

у(1/2)=2·(1/2)³-(3/2)·(1/2)²+2=1 целая 7/8 - наименьшее значение
у(0)=2
у(3)=2·3³-(3/2)·2²+2=54-6+2=50 - наибольшее значение

308 б)
у`=(2x³+3x²+(3/2)х+30)`=6x²+6x+3/2
y`=0
6x²+6x+(3/2)=0
или
4x²+4х+1=0
(2x+1)²=0

х=-1/2 - внутренняя точка отрезка [-3;3]

Знак производной при переходе через точку х=-1/2 не меняется

[-3]---- +------(1/2)---+-----[3]
x=0    x=1/2

функция возрастает на [-3;3]

y(-3)=2·(-3)³+3·(-3)²+(3/2)·(-3)+30=-54+27-4,5+30=-1,5- наименьшее значение
y(3)=2·(3)³+3·(3)²+(3/2)·(3)+30=54+27+4,5+30=115,5 - наибольшее значение

Находим значения функции в этой точке и на концах отрезка

у(1/2)=2·(1/2)³-(3/2)·(1/2)²+2=1 целая 7/8 - наименьшее значение
у(0)=2
у(3)=2·3³-(3/2)·2²+2=54-6+2=50 - наибольшее значение




(414k баллов)
0 голосов

Путем подстановки, выходит:
В 307(а) наименьшее значение функции при х=1, выходит :
f(x)=1^4-4*1+5=1-4+5=2
наибольшее при х=-3
f(x)=(-3)^4-4*(-3)+5=81+12+5=98

308(b) наименьшее при х=-3, а наибольшее при х = 3
2*(-3)^3+3*(-3)^2+ \frac{3}{2} *(-3)+30=-54+27-4,5+30=-1,5
2*3^3+3*3^2+ \frac{3}{2} *3+30=54+27+4,5+30=115,5

(15.5k баллов)