Если все рёбра равны, то тетраэдр - правильный.
Расстояние между всеми противоположными рёбрами равно 6, в том числе и РМ.
АРМ - прямоугольный треугольник: РМ ⊥АД (по свойству расстояния между непересекающимися прямыми).
АМ - высота треугольника основания равна всем апофемам.
Обозначим сторону тетраэдра "а".
АМ = а*cos30 = a√3/2.
АР равно а/2 по заданию.
(a√3/2)² = 6² + (а/2)²,
3а²/4 = 36 + а²/4,
2а²/4 = 36
а²/2 = 36
а = √(36*20 = 6√2.
Тогда АМ = (6√2)*(√3/2) = 3√6.
Расстояние между непересекающимися прямыми равно расстоянию между параллельными плоскостями, в которых лежат рассматриваемые прямые.
Изобразим проекцию тетраэдра на плоскость, перпендикулярную стороне АВ.
Тогда проекция тетраэдра примет вид треугольника, две равные стороны которого равны высоте основания и апофеме. Третья сторона - ребро тетраэдра.
Так как Точки Р и М принадлежат серединам рёбер, то и их проекции будут лежать на серединах сторон полученного треугольника.
Отсюда вывод:
расстояние между непересекающимися прямыми равно половине расстояния между противоположными рёбрами тетраэдра.
Ответ: L = 6 / 2 = 3.