Дан куб ABCDA1B1C1D1. Точка k, m, t - середины ребер сс1, вс1, сd1 соответственно. Найдите ас1, если периметр сечения куба плоскостью кmt равен 12 корней из двух см. Изобразите пожалуйста чертеж и напишите дано. Заранее благодарю.
Сечение - равносторонний треугольник. Сторона треугольника равна половине диагонали грани. Зная диагональ грани, надите ребро куба. Зная ребро куба, найдите диагональ куба. Это и есть величина АС1..
Полученное сечение- (мкт) - равносторонний треугольник .
МТ=1/2 в1д1
МТ=12корней из 2/3=4корней из 2 В1Д1=2*4корней из 2=8 корней из 2. ( чтобы найти ребро куба нужно извлеч квадратный корень из половины квадрата диагонали грани) В1С1= корень из В1Д1в квадрате / 2 = 8 Так как все ребра у куба равны следовательно рассмотрим треугольник АС1С- прямоугольный АС1^2=С1С^2+АС^2. А так как ( С1С=В1С1; АС=В1Д1) получаем АС1= корень из 192= 8 корней из 3