1. против большей стороны лежит больший угол
7>4√3>2√5 ⇒ BC>AB>CA ⇒ угол A > угла С >угла B
2.
Две окружности называются касающимися, если они имеют единственную общую точку, называемую точкой касания.
Касательной к окружности называется прямая, имеющая с окружностью одну общую точку.
При этом касание двух окружностей называется внешним, если центры окружностей лежат по разные стороны от точки касания и внутренним – если по одну сторону
Если две окружности касаются внутренним образом, то к ним можно провести только одну внешнюю касательную, проходящую через их точку касания (точку А)
Если имеет место внешнее касание двух окружностей, то к ним можно провести три общие касательные – две внешние и одну внутреннюю- в нашем случае как раз ту которая проходит через точку касания A.
По условию точка A является общей точкой касания окружностей. ⇒ принадлежит как одной так и другой окружности. Так как касательная проходит через общую точку, то след-но она будет касательной для обеих окружностей.