А) cos^2x-sin^2x+3sinx-2=0
1-sin^2x-sin^2x+3sinx-2=0
-2sin^2x+3sinx-1=0
Пусть t=sinx, где t€[-1;1], тогда
-2t^2+3t-1=0
D=9-8=1
t1=-3-1/-4=1
t2=-3+1/-4=-1/2
Вернёмся к замене:
sinx=1
x=Π/2+2Πn, n€Z
sinx=-1/2
x=-5Π/6+2Πk, k€Z
x=-Π/6+2Πk, k€Z
б) Решим с помощью двойного неравенства:
1) Π<=Π/2+2Πn<=5Π/2<br>Π-Π/2<=2Πn<=5Π/2-Π/2<br>Π/2<=2Πn<=4Π/2<br>Π/4<=Πn<=Π<br>1/4<=n<=1<br>n=1
x=Π/2+2Π*1=Π/2+2Π=5Π/2
2) Π<=-5Π/6+2Πk<=5Π/2<br>Π+5Π/6<=2Πk<=5Π/2+5Π/6<br>11Π/6<=2Πk<=20Π/6<br>11Π/12<=Πk<=20Π/12<br>11/12<=k<=20/12<br>k=1
x=-5Π/6+2Π*1=-5Π/6+2Π=7Π/6
3) Π<=-Π/6+2Πk<=5Π/2<br>Π+Π/6<=2Πk<=5Π/2+Π/6<br>7Π/6<=2Πk<=16Π/6<br>7Π/12<=Πk<=16Π/12<br>7/12<=k<=16/12<br>k=1
x=-Π/6+2Π*1=11Π/6
Ответ: а) Π/2+2Πn, n€Z; -5Π/6+2Πk, -Π/6+2Πk, k€Z; б) 7Π/6, 11Π/6, 5Π/2