На сторонах AB и BC треугольника ABС отмечены точки P и Q так, что углы BPC и BQA равны, BP=BQ, AB=15, BQ=8, CP=9. Найдите периметр треугольника COQ, где O — точка пересечения прямых AQ и CP
Рассмотрим ΔВРС и ΔBQA они равны по второму признаку , так как BP=BQ ∠B общий,∠BPC=∠BQA ⇒AB=BC=15⇒QC=15-8=7 и АР=7, ∠BAQ=∠BCPиз равенства ΔBPC и ΔBQA ∠APO=∠CQO как смежные с углами ∠BPC и ∠BQA⇒ ΔAPO=ΔCQO⇒PO=OQ ⇒CO+OQ=9 PΔCOQ=9+7=16