Найдите три последовательных натуральных числа, зная ,что если из произведения двух...

0 голосов
36 просмотров

Найдите три последовательных натуральных числа, зная ,что если из произведения двух больших чисел вычесть квадрат меньшего числа, то получится 188


Алгебра (18 баллов) | 36 просмотров
Дан 1 ответ
0 голосов

Пусть а - первое из четырех последовательных чисел.
Тогда:
а+1 - второе число,
а+2 - третье число,
а+3 - третье число.
а и а+1 - два меньших числа.
а+2 и а+3 - два больших числа.
а(а+1) - произведение меньших чисел.
(а+2)(а+3) - произведение больших чисел.
Уравнение:
(а+3)(а+2) - а(а+1) = 74
а^2 + 3а + 2а + 6 - а^2 - а = 74
5а + 6 - а = 74
4а = 74 - 6
4а = 68
а = 68 : 4
а = 17 - первое из натуральных чисел.
а+1 = 17+1 = 18 - второе число.
а+2 = 17+2 = 19 - третье число.
а+3 = 17+3 = 20 - четвертое число.
Ответ: 17, 18, 19, 20

(37.4k баллов)