
Хотелось бы иметь дискриминант полным квдратом. Значит, 4y^2-3 - полный квадрат. Значит, y делится на 3. y=3Y
36Y^2-3=3(12Y^2-1)
Очвидно, что квадрат должен делится на 9, но то, что в скобках, на 3 не делится.
Все написанное верно, если y не равно 1. Но если y=1, то левая часть больше единицы.
P.S. Из написанного следует, что целочисленные решения могут быть только при y=+-1. Решая уравнения, можно получить 2 целочисленных решения (1, -1) и (-1, 1)