Докажите, что у равных треугольников ABC и A1B1C1 медианы, проведённые из вершин A и A1...

0 голосов
82 просмотров

Докажите, что у равных треугольников ABC и A1B1C1 медианы, проведённые из вершин A и A1 равны. Помогите пожалуйста!!!


Геометрия (80 баллов) | 82 просмотров
Дано ответов: 2
0 голосов

1)

∠С = ∠C1, ∠А = ∠А1, ∠В = ∠В1

ВО = ОС = В1О1 = О1С1, т.к. АО и А1О1 — медианы, и ВС = В1С1.

В ΔАОС и ΔА1О1С1: АС = А1С1, ОС = О1С1, ∠С = ∠С1. Таким образом, ΔАОС = ΔА1О1С1 по 1-му признаку, откуда АО = А1О1. 2)

Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.

В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

Откуда AK = A1K1.

Т.к. ΔАВС = ΔA1B1C1, то: AC = А1С1, ∠A = ∠А1, ∠С = ∠С1.

∠BAK = ∠KAC = ∠B1A1K1 = ∠K1A1C1, т.к. AK и A1K1 — биссектрисы равных углов.

В ΔAKC и ΔA1K1C1: АС = А1С1, ∠С = ∠С1, ∠KAC = ∠K1A1C1. Таким образом, ΔAKC = ΔA1K1C1 по 2-му признаку равенства треугольников.

Откуда AK = A1K1.

(38 баллов)
0 голосов

Решение

 Пусть M и M1 — середины сторон BC и B1C1. Из равенства треугольников ABC и A1B1C1 следует, что

 A1C1 = ACACB = A1C1B1, C1M1 = CM

 (как половины равных отрезков C1B1 и CB). Поэтому треугольники ACM и A1C1M1 равны по двум сторонам и углу между ними. Следовательно, AM = A1M1.

(80 баллов)