1) По теореме: В прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Построим высоту из прямого угла К, обозначим точку пересечения D. Имеем, что гипотенуза КM в прямоугольном треугольнике KDM равна 2 катетам КD, по условию она равна 24,8 дм, т.е. KD = 12,4 дм. (KD - это расстояние от точки К до гипотенузы). По теореме Пифагора найдем второй катет KL, это и будет проекция наклонной LM на прямую KL: Составим уравнение, обозначив KL = x, LM = 2x
2) Здесь тоже используем теорему В прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы. Длина отрезка между параллельными прямыми 17,6 дм - это гипотенуза. Расстояние между параллельными прямыми - это катет, лежащий против гипотенузы, поэтому расстояние между параллельными прямыми будет равно 17,6 : 2 = 8,8 дм.