Пусть t = 2^(2 - x^2) - 1;
t = 0:
2^(2 - x^2) = 1;
2 - x^2 = 0;
x = +-√2;
По одз t =\= 0;
3/(t^2) - 4/t + 1>= 0; * t^2
3 - 4t + t^2 >= 0;
(t - 3)(t - 1) >= 0;
(2^(2 - x^2) - 4)(2^(2 - x^2) - 2) >= 0;
(2 - x^2 - 2)(2 - x ^2 - 1) >= 0;
-x^2(x + 1)(x - 1) >= 0;
___+___-1__-__0__-__1__+__>
x ∈ (-00; -1] ∨ {0} ∨ [1; +00) \ {-√2, √2};