Используем формулы, вытекающие из основного тригонометрического тождества, поэтому 1-sin²α=cos²α , 1-cos²α=sin²α, а также tg α ·ctg α = 1, вытекающую из определений тангенса и котангенса.
Получаем: cos²α ·sin²α +1=(для произведения применяем формулу двойного угла для синуса cosα ·sinα= 1/2*2 cosα·sinα=1/2·sin2α)=
= 1/4 ·sin²2α+1