Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 4:3,...

0 голосов
112 просмотров

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 4:3, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 9 см.


Геометрия (38 баллов) | 112 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть в треугольнике ABC проведены биссектрисы AA1, BB1, CC1, которые пересекаются в точке О. По условию, АО/А1О=4/3. Треугольники ABO и A1BO имеют одинаковую высоту, поэтому отношение их площадей равно 4/3. Кроме того, существует формула площади S=1/2ab*sin(a), из которой находим, что \frac{1/2AB*BO*sin(ABO)}{1/2A_{1}B*BO*sin(A_{1}BO)}=\frac{4}{3}=\frac{AB}{BA_{1}}. Аналогично получаем, что AC/A1C=4/3. Сложим эти равенства, получим, что 4/3=(AB+AC)/BC, BC=9, AB+AC=12, p=21.

(47.5k баллов)