1)Вычислить , Если и

0 голосов
36 просмотров

1)Вычислить cos \alpha, sin2 \alpha
Если sin\alpha= \frac{9}{13} и \frac{ \pi }{2} \ \textless \ \alpha \ \textless \ \pi


Алгебра (70 баллов) | 36 просмотров
Дан 1 ответ
0 голосов

sin(4α+π6)==sin4α×cosπ6+cos4α×sinπ6=

=sin4α×3√2+cos4α×12=

=2sin2α×cos2α×3√2+(cos22α−sin22α)×12=

=2sinα×cosα×cos2α×3√+cos22α−sin22=

=2sinα×cosα×(cos2α−sin2α)×3√+(cos2α−sin2α)(cos2α−sin2α)−sin22=

=23√sinαcosα(cos2α−sin2α)+(cos2α−sin2α)(cos2α−sin2α)−(2sinα×cosα)(2sinα×cosα)2=

=23√sinαcosα(cos2α−sin2α)+(cos2α−sin2α)(cos2α−sin2α)2−2sin2α×cos2α=

=2×3√sinαcosα(cos2α−sin2α)+cos4α−(sin2α×cos2α)−(sin2α×cos2α)+sin4α2−2sin2α×cos2α=

=23√sinαcosα(cos2α−sin2α)+(cos2α−sin2α)22−2sin2α×cos2α=

=23√(sinα×cos3α−sin3α×cosα)+(1−2sin2α)22−2sin2α×cos2α=

=23√(sinα×cos3α−sin3α×cosα)+12−2sin2α+2sin4α−2sin2α×cos2α=

=2sinα(3√×cos3α−3√sin2α×cosα+14sinα−sinα+sin3α−sinα×cos2α)=

Right side:

sin(2α+π5)=sin2x×cosπ5+cos2α×sinπ5=

=2sinαcosα×cosπ5+(cos2α−sin2α)sinπ5=

=2sinαcosα×cosπ5+(1−2sin2α)sinπ5=

=2sinαcosα×cosπ5+sinπ5−2sin2α×sinπ5=

=2sinα(cosα×cosπ5+sinπ52sinα−sinα×sinπ5)

I can't get any further on either. Bringing them together I get:

2sinα(3√×cos3α−3√sin2α×cosα+14sinα−sinα+sin3α−sinα×cos2α)=2sinα(cosα×cosπ5+sinπ52sinα−sinα×sinπ5)

(37 баллов)