Квадратное уравнение имеет два корня тогда и только тогда, когда его дискриминант положителен, и один корень тогда и только тогда, когда он равен нулю.
Воспользуемся этим знанием. У нашего уравнения два корня тогда и только тогда, когда у нового (после замены) ровно один положительный корень, а второй либо отрицательный, либо совпадает с первым. Давайте теперь это запишем.
Коэффициенты квадратного уравнения:
Сразу видим, что он неотрицателен, но нам потребуется ещё и явно выписать корни.
Так как стоит плюс-минус, то модуль можно просто убрать, неважно, как он раскрывается
Здесь мы видим, что всегда есть один положительный корень, и нам нужно требовать, чтобы второй был отрицателен:
При таких а наше уравнение будет иметь ровно два корня, и мы их даже нашли, что было необязательно.
Ответ: