помогайте,а то вылечу из школы!! задания во вложениях ,решите любую буду премного...

0 голосов
57 просмотров

помогайте,а то вылечу из школы!!

задания во вложениях ,решите любую буду премного благодарен!


image
image
image

Алгебра (89 баллов) | 57 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 

y=(9-7x)^8, \\ y'=((9-7x)^8)'=8(9-7x)^7\cdot(9-7x)'=8(9-7x)^7\cdot \\ \cdot(9'-(7x)')=8(9-7x)^7\cdot(0-7x')=8(9-7x)^7\cdot7= \\ =56(9-7x)^7, \\ \\ y=\sqrt{9x+1}, \\ y'=(\sqrt{9x+1})'=((9x+1)^\frac{1}{2})'=\frac{1}{2}(9x+1)^{-\frac{1}{2}}\cdot(9x+1)'= \\ =\frac{1}{2(9x+1)^\frac{1}{2}}\cdot((9x)'+1')=\frac{1}{2}\cdot\frac{1}{\sqrt{9x+1}}\cdot(9x'+0)= \\ =\frac{1}{2\sqrt{9x+1}}\cdot9=\frac{9}{2\sqrt{9x+1}},

 

y=cos(\frac{x}{2}+\frac{\pi}{4}), \\ y'=(cos(\frac{x}{2}+\frac{\pi}{4}))'=-sin(\frac{x}{2}+\frac{\pi}{4})\cdot(\frac{x}{2}+\frac{\pi}{4})'=-sin(\frac{x}{2}+\frac{\pi}{4})\cdot\frac{1}{2}= \\ =-\frac{1}{2}sin(\frac{x}{2}+\frac{\pi}{4}), \\ \\ y=\frac{2}{5x+2}, \\ y'=(\frac{2}{5x+2})'=\frac{2'\cdot(5x+2)-2(5x+2)'}{(5x+2)^2}=\frac{0-2\cdot5}{(5x+2)^2}=-\frac{10}{(5x+2)^2};

 

image0, 3x^2-3>0, \\ x^2-1>0, \\ (x+1)(x-1)>0, \\ (x+1)(x-1)=0, \\ x+1=0, x_1=-1, \\ x-1=0, x_2=1, \\ x \in(-\infty;-1)\cup(1;+\infty)" alt="f(x)=x^3-3x+7, \\ f'(x)=(x^3-3x+7)'=(x^3)'-(3x)'+7'=3x^2-3, \\ f'(x)>0, 3x^2-3>0, \\ x^2-1>0, \\ (x+1)(x-1)>0, \\ (x+1)(x-1)=0, \\ x+1=0, x_1=-1, \\ x-1=0, x_2=1, \\ x \in(-\infty;-1)\cup(1;+\infty)" align="absmiddle" class="latex-formula">

(93.5k баллов)