AM -биссектриса прямого угла равнобедренного треугольника ABC. Найдите углы треугольника AMB.
угол ABM=1/2 углаA, 1/2*90=45. угол B=углу С, т.к. тр. ABC- равнобедренный. угол B+ угол С=180-угол A, B+C=180-90=90. угол B=90/2=45. угол AMB=180-(BAM+ABM), AMB=180-90=90. Ответ: угол BAM=45, угол ABM=45, угол BMA=90.
треугольник АВС равнобедренный. Угол А - прямой = 90градусов (по условию), углы при основании С и В равны, т.к. треугольник равнобедренный = градусов.
Т.к. треугольник АВС равнобедренный, то биссектриса АМ является одновременно и высотой. Треугольник АМВ прямоугольный с углами
АМВ = 90градусов
МВС = 45
ВАМ = 45