Cторона основания правильной четырехугольной пирамиды равна а, а ее диагональное сечение...

0 голосов
140 просмотров

Cторона основания правильной четырехугольной пирамиды равна а, а ее диагональное сечение - равносторонний треугольник. Найдите обьем пирамиды.


Геометрия (931 баллов) | 140 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Cторона основания правильной четырехугольной пирамиды равна а, а ее диагональное сечение - равносторонний треугольник.
Найдите обьем пирамиды

 

Объём пирамиды равен одной трети произведения площади основания на ее высоту.
Площадь основания - площадь квадрата-
S ABCD=а²
Высоту найдем исходя из того, что диагональное сечение пирамиды - правильный треугольник АSС.


Стороной этого треугольника является диагональ АС основания.
Диагональ квадрата равна а√2
АС=АS=SC=а√2
Так как углы правильного трегуольника равны 60°, высота пирамиды
SO=АS·sin(60°)=(а√2·√3):2=а√6):2
Объем пирамиды
V={(а²·а√6):2}:3=(а³√6):6


image
(228k баллов)